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A formal synthesis of (+)-axamide-1 and (+)-axisonitrile-1 was achieved by using an intramolecular Hos-
omi-Sakurai reaction of the allylsilane derivative, as a key step, in which [(3-but-3-en-1-yl-3-methylcy-
clohex-1-en-1-yl)methyl](trimethyl)silane was transformed to a bicyclic compound possessing a core
carbon framework under the oxidative dihydroxylation reaction conditions, in one step.

© 2010 Elsevier Ltd. All rights reserved.

Axamide-1 1 and axisonitrile-1 2, isolated from the marine
sponge Axinella cannabina, belong to the family of axane sesquit-
erpenoids. This class of natural products exhibit unusual structural
features based on a cis-fused hexahydroindane framework with an
exo-methylene unit and a functionalized side chain (Fig. 1).!”7
Some of the compounds exhibit interesting biological properties.®

Regarding the synthesis of these sesquiterpenes, there have
been three racemic synthesis®!' and one chiral synthesis.!? In
these syntheses, ingenious strategies were devised in order to con-
struct the central perhydroindane skeleton with an exo-methylene
unit. Our interest in axane sesquiterpene chemistry grew out of a
desire to develop a new, perhaps practical and general route for
the synthesis of this class of natural products.

Recently, we have developed an efficient methodology for the
construction of a bicyclo[3.3.1]nonane ring system with an exo-
methylene moiety by employing an intramolecular Hosomi-Saku-
rai reaction. We have already successfully applied the methodol-
ogy to the stereoselective synthesis of (+)-upial'® and trifarienols.!*

As a part of our continuing work on the synthesis of functional-
ized polycyclic carbocyclic systems from readily available starting
material, we are interested in establishing an efficient synthetic
route to axane sesquiterpenoids having a bicyclo[4.3.0]nonane ring
system by employing an intramolecular Hosomi-Sakurai reaction
as a key reaction.!”

The retrosynthetic route to axane sesquiterpenes is depicted in
Figure 2, in which we envisaged that the target natural products
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could be obtained from alcohol 3 according to the literature proce-
dures.!! Based on the consideration of our previous results, we
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Figure 1. Structures of axamide-1 and axisonitrile-1.
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Figure 2. Retrosynthetic route to axane sesquiterpenes.
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Scheme 1. Preparation of diol 8.

decided to exploit an intramolecular Hosomi-Sakurai reaction of
aldehyde 4 for the synthesis of 3, since the basic carbon framework
and an exo-methylene unit of the target compounds could be con-
structed by this reaction simultaneously. Aldehyde 4 would easily
be obtained from the corresponding olefin 5 by oxidation, and ole-
fin 5 might be transformed from the literature-known 3-(but-3-en-
1-yl)cyclohex-2-en-1-one 6!°¢ via Michael addition of a methyl
group, followed by Kumada coupling of the resulting triflate with
trimethylsilylmethylmagnesium chloride in the presence of a pal-
ladium catalyst as shown in our previous work.

The requisite key compound 5 was prepared as follows.

Treatment of 3-(but-3-en-1-yl)cyclohex-2-en-1-one 6 with
methyllithium in the presence of copper(l) iodide in ether at -
40 °C for 20 min afforded the addition product, which on further
treatment with PhNTf, at the same temperature for 12 h gave tri-
flate 7 in 76% yield. Coupling reaction of 7 with trimethylsilylmeth-
ylmagnesium chloride in the presence of Pd(PPhs), in refluxing
THF for 2.5 h gave the desired allylsilane 5'® in 93% yield. To obtain
aldehyde 4, dihydroxylation of 5 with a catalytic amount of 0sO4
and NMO was carried out to give diol 8 in 73% yield (Scheme 1).

Oxidative cleavage of 8 with NalO,4 in dioxane-H,0 (3:1) was first
attempted at room temperature for 1 day; however, the desired
aldehyde 4 was isolated in only 3% yield. Interestingly, the major
product in this reaction was identified to be the cyclization com-
pound 3b'” (12% yield), where an intramolecular Hosomi-Sakurai
reaction probably took place instantaneously via aldehyde 4 by
the presence of NalO4 (entry 1). It is notable that this one-step con-
version of 8 to 3 proceeded in a concentration-dependent manner. In
fact, when the oxidative cleavage was carried outin 0.01 Mor0.02 M
solution, the yield of 3b was improved to 53% (entries 4 and 5). The
results obtained in this study are summarized in Table 1.

The o-alcohol 3a obtained as a minor product in this conversion
was the key intermediate in Kuo’s synthesis of the target com-
pounds, and its spectroscopic data were identical with those re-

Table 1
One-pot conversion of 8 to 3 under the oxidative cleavage reaction condition

TMS
NalO, (2.0 eq) H OH
dloxane H,0 (3:1)
rt, 1 day

Entry Concn Products
3a (%) 3b (%) 4 (%)
1 0.5 — 12 3
2 0.1 — 15 5
3 0.05 5 16 1
4 0.02 15 53 4
5 0.01 16 53 10

Table 2
One-pot conversion of 5 to 3
™S 0s0,, (5 mol%) ™S
4 o
oxidant H __QH H o PH o
Y, dioxane-H,O (3:1) X
+ +

then reagent
rt

5 3a 3b 4
Entry  Concn Oxidant Reagent Products
(equiv) (equiv) 3a(%) 3b(%) 4(%)
1 0.02 None NalO4 (2.0) None None None
2 0.02 None NalO4 (4.0) None None None
3 0.1t00.02 NMO (2.0) NalO4(2.0) None None 59
4 0.1t0 0.02 NMO (2.0) NalO4(4.0) None 28 25
5 0.1to 0.02 NMO (2.0) NalO4(8.0) 17 62 None

ported.!! Thus, a formal synthesis of axane sesquiterpenes was
achieved at this stage; however, some modification is required to
improve the reaction sequences.

Since diol 8 could be transformed to 3 in one step, we next
investigated one-pot conversion of olefin 5 to 3b without isolation
of diol 8, hopefully under mild reaction conditions, to prove that
the reaction sequence is efficient.

As can be seen in Table 2, the attempted one-pot conversion did
not take place in the absence of oxidant NMO (entries 1 and 2).
When 2 equiv of NMO and 2 equiv of NalO4 were employed for this
reaction, aldehyde 4 was isolated as the major product in 59% yield
(entry 3). The best result was obtained when this reaction was car-
ried out by using 2 equiv of NMO and 8 equiv of NalO,4 in dioxane/
H,0 = 3:1 (v/v) at room temperature for 1 day, providing 3b in 62%
yield. The stereoselectivity exhibited in the formation of 3b as the
major product can be rationalized by assuming that this cyclization
would proceed via the more favorable dipolar model TS-A rather
than TS-B as depicted in Figure 3.

Since we were able to establish an efficient synthetic route for
the core carbon framework having an exo-methylene unit of the
target compounds in very short steps, further transformation of
B-alcohol 3b to the known intermediate!! for the synthesis of
(+)-axamide-1 and (#)-axisonitrile-1 was then investigated.
Although difficulties were initially encountered in the conversion
of the hydroxyl group to a cyano group and also in inversion of
the secondary hydroxyl group using Mitsunobu reaction under var-
ious reaction conditions, Parikh-Doering oxidation!® of 3b finally
afforded the known ketone 9 in 61% yield (Scheme 2).
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Figure 3. Plausible stereochemical pathway in the Hosomi-Sakurai reaction to give
3b predominantly.
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Scheme 2. Conversion of 3b to the known ketone 9.
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Since ketone 9 was already transformed into (t)-axamide-1 and
(#)-axisonitrile-1 by Kuo et al,'' this synthesis constitutes their
formal synthesis.

In summary, we were able to establish an efficient formal syn-
thesis of (+)-axamide-1 and (t)-axisonitrile-1 by employing an
intramolecular Hosomi-Sakurai reaction as a key step. The syn-
thetic strategy is quite general and the reaction sequence is rela-
tively short with reasonable yields. The strategy developed here
provides a further useful example of an intramolecular Hosomi-
Sakurai reaction in the synthesis of natural products.
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